ClearLock 640-641

INSTALLATION AND PARTS MANUAL Rev 4

Rev	Date	Nature of the modification
00	$23-11-07$	1° Issue
01	$17-12-2008$	Appendix C
02	$17-06-2009$	Update
03	$20-05-2011$	Update
04	$29-06-2011$	Sliding doors installation

Contents

1. DESCRIPTION 3
1.1. Recommended Tools and Supplies 4
1.2. Safety Equipment 5
2. INSTALLATION PROCEDURE. 6
2.1. Pre-installation Inspection 6
2.2. Installation Procedure 7
2.2.1. Unpacking and Inspecting:7
2.2.2. Installation 8
2.3. Wiring the sytem 21
3. PREVENTIVE MAINTENANCE AND ADJUSTMENTS 41
3.1. Main Checks 41
3.2. Basic Maintenance 42
3.3. Doors parameters setting 43
3.4. Metal Detector setting 47
3.4.1. Electrical wiring connections 48
3.4.2. Programming 56
3.4.3. Functions 57
4. TROUBLESHOOTING GUIDE 62
5. APPENDIX A - BULLET RESISTIVE GLASS RATINGS 66
6. APPENDIX B - PARTS (AD003 DRAWING) 67
7. APPENDIX C - INTERCOMS WIRING - TWO PLACES 69

1. Description

Figure 1-1 180° transit booth

1.1. Recommended Tools and Supplies

You must have the following tools on the job site to effectively complete the installation:

- Percussion Hammer ($0: 35 \mathrm{~mm}$)
- Hammer drill ($0: 15 \mathrm{~mm}$)
- Percussion drill bits ($3 \mathrm{~mm}, 4 \mathrm{~mm}, 5 \mathrm{~mm}, 6 \mathrm{~mm}, 8 \mathrm{~mm}, 10 \mathrm{~mm}$, by 15 cm long)
- Cordless 10 mm drill with clutch (to drive screws)
- Screwdriver \#2 Phillips bit and \#3 Phillips bit, 15 cm long for drill
- Step ladders (h: $2 m$)
- Aluminium shims, various thickness and sizes
- Wire stripper tool
- Console cable (provided in accessories box inside BOX , 50 m , see page 7)
- Feeder cable (Supplied by others 8A, 220V)
- Intercom cable (provided in accessories box inside BOX, 50 m , see page 7)
- Tape measure
- Self expanding anchors (provided)
- Tools kit as shown in the picture below, containing:

Table 1-1 Tools kit

($\mathrm{I}=$ length; $\mathrm{w}=$ width; $\varnothing=$ diameter)

Quantity	Description	Sizes (\varnothing, I and w in mm)
3	Nick - head	- $\sigma \times 1: 0.6 \times 4-1 \times 6.5-1.2 \times 8$
3	- Phillips - head	- 0:1-2-3
5	- Hexagonal - head	- $0: 3-4-5-6-8$
13	- Hexagonal spanners	$\begin{aligned} & -\quad \begin{array}{l} \quad: 4-4.5-5-5.5-6-7-8-9 \\ 12-13-17 \end{array} \\ & \hline 10-11- \\ & \hline \end{aligned}$
2	- Extensions	- 1:55-105
1	- Pawl	
1	- T Handle	
1	- Hinge	
1	- Handle	

Figure 1-2 Tools kit

- Lifting device (see page 9)
- Grinder or round and square files
- Utility knife
- Pliers (length: 200 mm)
- Silicone caulking (provided)
- Silicone gun
- Snips
- Water level
- Shop vacuum cleaner
- Glass cleaner
- Paper towels
- Masking tape or other device for labelling cables and wires
- 2 Suction Cups to move glass

1.2. Safety Equipment

Make sure to have the following safety equipment on the job site:

- Hard hat
- Steel toe shoes
- Safety glasses
- Back support
- Gloves

2. Installation Procedure

2.1. Pre-installation Inspection

To put into practice a good installation creating as less as possible troubles and risks, it is better to check:

- If installation ambient temperature is $-10^{\circ}<{ }^{\circ} \mathrm{C}<+70^{\circ}$ for all the year.
- If the passage for console and intercom cables was planned before starting booth installation.
- If no high power cables or tubes are present in the nearby of the booth location. Note: It is available, in case of really cold weather conditions, an automatic heater that installed into the top of the booth grants acceptable conditions for the booth.
Proceed, when it is possible, the laying of cables in connection with booth installation, in any case before installing possible false ceilings or floating floors.
Be sure that the electric plant is appropriate for this installation. (220V, 8A)
Carefully protect all parts in glass and / or painted when working close to the booth Make sure the floor is level plus or minus 6 mm within 4 m run. If the floor is not level, stop this installation and ask the general contractor to level the floor.
Make sure that the width of the wall opening is at least 10 mm larger than the outside width of the booth.
Make sure the minimum clearance above the booth is 25 mm or larger. This space is necessary to position the booth.
Make sure the minimum clearance above the booth after installation is 61 cm or larger. This space is necessary to allow for electrical connections and future servicing. A 50 m length of console and intercom cable is provided with the booth. Unless specified on the sales order, all other required cabling is not shipped with the booth. Do not use the booth as a scaffold or as a support for the execution of overhanging works!
Avoid that any acid (also if diluted) used to clean floors or glasses may enter in contact with the base of the booth.

Do not modify in any way the booth.

Check floor resistance to booth weight.
Use non-shrink cement filling the hole in the floor around the pit form in order to achieve a stable and flat positioning. Avoid using highly liquid mixings that during the drying process contract themselves leaving empty spaces, allowing oscillations.
The anchorage of the embedded template has to be done well in advance of booth installation to enable a correct cement drying.
A good success of this operation is basic to obtain a correct working of the booth.
Avoid the creation of intermittent windings with additional metal works.
Pay attention that screws, used to fix additional metal works to the booth, do not pierce the non-conducting structure supplied in kit.
Metal Detector correct working may be affected also by noises originated outside the room in which the booth has been installed.
It is necessary to notify to installation technicians about this situation to solve possible problems arising from noises near to the booth, e.g.:

- overhead or underground electric lines;
- transformers;
- radio transmitters;
- neon signs working incorrectly or with no-standard reactors;
- high voltage transformers;
- machines that cause high vibrations;
- the transit nearby of trains or underground;
- high frequency machines;
- Lifts;
- conditioning units, monitors, televisions, cash dispensers.

Moving doors have to be as far away as possible from Metal Detector antennas (at least 100 cm .).
When these doors are closed, they have to be perfectly locked and they have not to swing.
In case one door is used as a passage, it has to be slowed down by a piston pump in order to avoid swinging while closing.
Sectioning cuts must be arranged in the door frame.
Pay attention that possible electric locks do not create intermittent windings between the fixed part and the mobile part, in that case use non-conducting mobile parts. (PVC, resin, laminate, etc.)

Avoid positioning of Metal Detector antennas close to metallic false ceilings: they could create intermittent windings.
In case it is not possible to use different kind of materials, pay attention that false ceiling support structure is compact and isolated from other metallic parts.
If it is possible, please use plaster cardboard, plastic material or in any case nomagnetic materials for false ceilings.
In case of floating floors, carefully check that the supporting structures do not cause intermittent windings.
Check that there are no electric dissipations on the ground.
Arrange for a dedicated line with 10 A two poles automatic breaker on the main panel.

2.2. Installation Procedure

2.2.1. Unpacking and Inspecting:

Move the box near to the place of installation with a crane truck, open and unpack all single booth component:

BOX : weight from 700 kg to 850 kg , according to booth model.

- \quad N1 BASE (drawing AD 003 \# 1)
- \quad 1 TOP OF THE BOOTH WITH MOTORS AND FULL ELECTRONICS (drawing AD003 \# 2)
- $\mathrm{N}^{\circ} 1$ CEILING
- $\quad N^{\circ} 2$ METAL DETECTOR ANTENNAS (on request) (drawing AD003 \# 11-12)
- Nº2 SLIDING DOORS (drawing AD003 \# 5-6)
- $\quad{ }^{\circ} 1$ ACCESSORIES AND SCREWS BOX
- $\quad N^{\circ} 4$ JAMBS (drawing AD003 \# 7.1-8.1-9.1-10.1)
- $\quad N^{\circ} 4$ ADDITIONAL STEEL FRAMES FOR JAMBS (drawing AD003 \# 7.2-8.2-9.2-10.2)
- $\quad N^{\circ} 2$ SIDE GLASSES or SIDE FRAMES (on request) (drawing AD003 \# 3-4)
- $N^{\circ} 1$ TOP COVER
- Remove the protective plastic insulating foil
- Remove packaging taking care not to cause damage to glasses or to surface. Clear all parts from the bottom box
- \quad Check that the parts are not damaged (glasses and surface).
- Check if the Metal Detectors antennas are not visibly damaged.
- Remove on the top of the booth the dehydrating salt bags inside
- Remove the accessories box that is inside the BOX, lean it on the floor, open it and check that nothing is missing (see the list on the box):
- 1 Console with Handset
- 1 Console cable (50 m)
- Fixing screws
- Plastic Shims
- 1 Paint box to cover scratches (on request)
- 1 Silicone tube
- 2 Keys for sliding door manual lock
- 2 Traffic lights / Intercom plates
- 4 Console keys

Note : In case the booth is sent as a monoblock, connect the crane of the truck to the 4 eyebolts on the top of the booth, then position 4 nylon rods on the floor and move the booth on them after having disconnect the crane. When you arrive in the right position, move away the booth from the rods with pry bars, taking care of the entrance / exit reference orientation. Finally go to step 16).

2.2.2. Installation

This is the installation of a $90^{\circ} \mathrm{SX}$ transit booth: all differences with the other models are shown during installation phases; all installation phases refer to AD003 drawing page 67.

1) Position the base of the booth (\#1) in the place where the booth will be assembled with rubber bubbles upside

Figure 2-1 Base adjustment (\#1)
p9/69
2) disassemble additional steel frames (\#7.2-8.2) from these 2 jambs [1] (they were assembled for the shipment - see Figure 2-9 page 14)
3) position the 4 jambs (\#7.1-8.1-9-10) according to next figures (weight 30 Kg each) and fix them on the base (\#1) with supplied screw nuts M10, washers

Figure 2-2 How to fix the 4 jambs
4) then, after having lifted the top with a crane or with 4 people, fix the jambs to the top with supplied screws TE 10×20, washers and non-conducting washers. Do not tighten.

Figure 2-3 Top of the booth positioning (\#2)

Figure 2-4 Top of the booth fixing

Insulating plate

Hex Socket Cap Screw M10x20

Top of the booth fixing screws (view from the top)
p12/69
5) The lifting device, if used, can be now kept away. Check the booth for verticality in its final position
6) Check if each part of the structure is isolated, using a tester in buzzer position. If the isolation has been done in a correct way the tester should remain silent. If the tester rings, check if all screws have their nonconducting washer
7) If metal detector is fitted follow this step, if not go to step 8)

Figure 2-5 Metal detector antenna fixing plates

Fix the provided plates and screws at the top and at the bottom of the low side jambs.

On the right the transmitting antenna - red cable (\#11); on the left side the receiving antenna - black cable (\#12). For the installation of 180° and $90^{\circ} \mathrm{DX}$ models the transmitting antenna go on the left (\#11) and the receiving antenna go on the right (\#12).

Figure 2-7 Two metal detector antenna covers fixing

Figure 2-8 Metal detector cables connection to the board and metal detector antennas fixing [1]
8) If metal detector is not requested follow this step instead of step 7)
9) re-insert the other two jambs covers (\#7.2-8.2) as shown in the next Figure 2-9

Figure 2-9 Two jambs covers fixing
10) check if the bottom and the top glass supports (\#13) are correctly fixed

Figure 2-10 Glass supports (\#13)
11) Position two small plastic shims [1] for each side (see accessories box page 7) between glasses and the relevant frame. Insert diagonally the side glasses with 2 suction cups as shown in the next Figure 2-11

NOTE : some versions are provided with side frames instead of side glasses

Figure 2-11 Side glasses installation (\#3-4)
12) introduce 4 plastic shims [1], for each glass, as shown in the next figure (2 at the top and 2 at the bottom) and then put adequate silicone mastic to fix glasses

Figure 2-12 Glasses fixing
13) Carefully clean the slide ways and then insert the sliding doors bottom (first the high side door \#5) into the bottom guides, check that doors do not touch the bottom guides (used the plastic shims 10 mm thikness), adjust vertical position of the doors with the jambs. Completely open sliding doors (\#5-6) and check them for parallelism. Check again for vertical adjustment. Lock the nuts of sliding doors holding screws. Try several times to move the truck by hand to verify that no jamming exists. See next Figures:

Figure 2-13 Sliding doors details (top and bottom views)

Figure 2-14 Sliding doors positioning inside the booth
p18/69
[1] Move trolley above the sliding door, so that the slotted holes are arranged on top of the threaded inserts in the top of the door
[2] Insert the upper side of the threaded pins into the slotted holes on the trolley, after insert and screw the pin into the relevant threaded insert.
[3] Stop the pin with the lock nut.
Repeat the operations described for all four pins (two for each trolley) and for both sliding doors

Figure 2-15 Sliding doors installation

Move the sliding doors, checking that the bottom wheels correctly rotate inside the guide Check that the distance between the fixing screw and the cover is $10-11 \mathrm{~mm}$ After complete the regulation as described thight the lock nuts [4].
14) Insert and fixing the ceiling as shown in the next Figure 2-16

Figure 2-16 Ceiling fixing
15) At this point wiring all photocells cables following instruction in 2.3 paragraph and the next Figure 2-17, connect all traffic lights plates, intercom plates and loudspeakers. Check that everything is wired correctly (each cable can be identified with a plate positioned on it). Connect on the ceilings the presence sensors and also the single presence sensors using MM02 connector (see pages 23 and 29). Check if the manual lock works properly.

Figure 2-17 Photocells wiring
16) Connect the intercom cable (provided) to the handset, the console cable (provided) to VB3406 board, the power supply to the main power.
17) Check if each part of the structure is isolated, using a tester in buzzer position (if metal detector has been installed). If the isolation has been done in a correct way the tester should remain silent. If the tester rings, check if all screws have their non-conducting washer. Turn ON the main power and turn ON the console. After initialization check if everything
works (sensors, safety beams photocells, doors speed, traffic lights, metal detector, spot lights, loudspeaker...) and, if something has to be modified, please follow instruction at Section 3 of this manual. Remove adhesive tapes from the spot light slowly.
18) During initialization be sure that no people and no objects are near to the booth because this can interfere with motion detectors automatic setting. At the end put on the top the top cover.

2.3. Wiring the sytem

Figure 2-18 General Components layout 180° and 90° DX

Figure 2-19 General Components layout K2 version

Figure 2-20 General components LAY OUT

View from the top

Figure 2-21 Electronic wiring diagrams

Figure 2-22 VB 4313SW Power supply wiring + Back-up batteries

INPUT POWER CONNECTOR
VB 4313 POWER SUPPLY CONNECTOR

M1

M2

Figure 2-23 NCD2 Console wiring

Cound connector 8P M
Console connector
Main console

NCD2 address setting with GR308-01 board

Figure 2-24 VB 3406 Components and Wirings Description

RS 485 SERIAL CONNECTOR

Figure 2-25 Metal detector wiring (if present)

Figure 2-26 Traffic-light plate wiring

CN3

CN4 vB3406

TCP/IP interface connections

VB3406 \qquad
available input
 Attention
M3 is available to connect the intercom board
or the biometric device: di-bis (serial line
RS485). Attention
M3 is available to connect the intercom board
or the biometric device: di-bis (serial line
RS485). Attention
M3 is available to connect the intercom board
or the biometric device: di-bis (serial line
RS485). Attention
M3 is available to connect the intercom board
or the biometric device: di-bis (serial line
RS485).
available for presence sensor
available for high side radar
available for low side radar

CN7
VB3406
\qquad
VB3406
M3

CN5

	1	+12VDC
	2	OV
\square	3	- RS 485
\bigcirc	4	+ RS 485

Figure 2-27 Photocells amplifier general wiring

Figure 2-28 High and low side reset quota "0" sensor

Figure 2-29 Mechanical lock switch low side door

CN11
VB3406

Figure 2-30 High side and low side motor encoder wiring

Low side door E1 encoder connector

High side door E2 encoder connector

Figure 2-31 High side and low side motor and lock piston wiring

CN15

VB3406

CN14
VB3406

F3 $=$ FUSE 3; F4 = FUSE 4 (see 38 for more details)

Figure 2-32 Loud speaker wiring

CN16
VB3406

Figure 2-33 Connector MM02 wiring (part 1)

Figure 2-34 Connector MM02 wiring (part 2)

ClearLock 641-MT-EN

Figure 2-35 First entrance Key wiring (if requested)

p32/69

Figure 2-36 Instructions: "C 408 - Electronic board for electronic keys "

User instructions

- Put on the reader a recorded key: the relay stays activated in two-states stable mode or impulsive mode.

Relay active time setting

- Turn OFF the board
- Turn ON the board keeping pressed the CLEAR button (first press the button then turn ON)
- Keep the CLEAR button pressed and count the blinking of the red led on the board, that mean:
1° blinking $=$ two-states stable mode
2° blinking = "presence" (the relay stay activated while the key is put on the reader)
3° blinking $=250 \mathrm{~ms}$ (minimum value)
4° blinking $=1$ second
5° blinking $=2$ seconds and so on up to 27 seconds.
- Release the button when the required time is reached.

Memory clear and new key programming

- The red led on electronic board is normally off.
- Keep pressed the CLEAR button on the board for about 6 seconds: the red led blinks quickly. Release the button: the red led blinks slowly. The electronic board is now in programming mode and the memory is cleared.
- Put on the reader the keys to be recorded for a while: when the key is put on the reader correctly, the red led blinks quickly for 1 second.

The first recorded key is the master key. The master key works like the other keys, but it can put the electronic board in programming mode.

Record the other keys putting them on the reader for a while.
To exit the programming mode, put a recorded key on the reader.

New key programming with the master key

- Put on the reader the master key for about 8 seconds: the red led blinks slowly. The electronic board is now in programming mode.
- Put on the reader the keys to be recorded for a while.

To exit the programming mode, put a recorded key on the reader.
Attention: the provided keys are already recorded on the board; the master key has a clear plastic ring.installation:

Figure 2-37 VB 2001 SD presence sensor

TR1 sensitivity setting potentiometer

View from top

- Rotate CLOCKWISE to improve sensitivity
- Rotate ANTI-CLOCKWISE to decrease sensitivity
TR1 sensitivity setting potentiometer with the NEW BOARD

View from top

- Rotate CLOCKWISE to decrease sensitivity
- Rotate ANTI-CLOCKWISE to improve sensitivity

LD1 alarmed sensor signalling led

JP1,JP2 work frequency setting
$1,579 \mathrm{KHz}$
${ }_{0}^{0} 1,610 \mathrm{KHz}$
Q($1,650 \mathrm{KHz}$ ClearLock 641-EN
p34/69

Figure 2-38 VB 1290/4 EVAM single presence board

LD1,2,3,4
Transducers signal intensity led
Transducers signal setting (for each transducer use relevant potentiometer;
ex. TR1 = transducer 1)

- Rotate CLOCKWISE to increase the signal.
- Rotate ANTI-CLOCKWISE to decrease the signal.

SW3-2 Alarm phonic signal switch LD5 Alarmed sensor signalling led

- Rotate CLOCKWISE to increase the collapsing effect.
- Rotate ANTI-CLOCKWISE to decrease the collapsing effect.

PL1 Sensor RESET push button
LD6 Signalling Led for sensor RESET
LD8 Blinded sensor signalling led
P8 Blinding sensitività potentiometer
JP6 General alarm for blinded sensor jumper

- Rotate CLOCKWISE to increase the sensitivity.
- Rotate ANTI-CLOCKWISE to decrease the sensitivity.

J1 Connector to remote bar-graph display
F1 Fuse (800mA)

Transducers wiring (from connectors M1, M2, M3 and M4 to transducers through the supplied

Blinded sensor alarm contact wiring

Figure 2-39 VB 1370 N left object board
Lay-out board

TR1 Sensitivity setting potentiometer

- Rotate CLOCKWISE to increase sensitivity
- Rotate ANTI-CLOCKWISE to decrease sensitivity

LD1 Alarmed sensor signalling led
LD2 Sensor reset signalling led
JP1 Clocking selection

Figure 2-40 LAY OUT - GR308-01 board
GR308-01
p36/69

Figure 2-41 Intercoms wiring- one place

The loudspeaker unit item No. 2659N-043 932 is supplied with a

For two or more intercom places wiring see Appendix C - Intercoms wiring - two places medium calibration level both for the loudspeaker and for the microphone.
If the equipment whistles (Larsen effect), lower the microphone volume by rotating the corresponding potentiometer in anticlockwise direction until the problem is eliminated. If the loudspeaker volume is too low rotate the corresponding potentiometer in clockwise direction until an acceptable level is reached before the Larsen effect is triggered (whistle). If the volume reached before the Larsen effect is too low, reduce the microphone level to the lowest acceptable level and raise the loudspeaker volume as much as possible.
(1) Potentiometer adjusting the loudspeaker

Figure 2-42 "IRA-4BIP" Safety beams wirings

Figure 2-43 VB3406 Main Board layout

Table2-1 VB3406 components legenda

(see also page 38)		
JP1	output selection +12/24VDC output selection +12/24VDC	$3-\mathrm{CN} 14$
JP2 CN15		

JP3 RS 485 serial line end jumper
JP5 Service jumper - DO NOT touch (closed)
JP6 Service jumper - DO NOT touch (closed)
JP7 Vocal messages Write protect jumper - close=write protect
JP12 Service jumper - DO NOT touch (pos. 1-2 closed)
LD5 Relay RL1 state led
LD7 Low side door data movement recording led
LD9 RS-232 communication led
LD10 RS-485 communication led
LD15 Relay RL2 state led
LD20 High side door data movement recording led
LD21 Relay RL4 state led
LD22 Relay RL5 state led
LD26 Relay RL6 state led
LD27 Relay RL7 state led
LD34 Power ON led
LD40 Relay RL8 state led
TR1 Messages volume setting
SW1 Main microprocessor RESET button
SW2 Available button

F 1 Fuse 2A quick burning (+12VDC power in)
F 2 Fuse 10A quick burning (+24VDC power in)
F 3 Fuse 10A quick burning (low side door motor - CN15)
F 4 Fuse 10A quick burning (high side door motor - CN14)
F 5 Fuse 500mA quick burning (M4 connector power out +12/24VDC)
J1 RS-232 connector
J2 IN-CIRCUIT main CPU programming connector
J3 Connettore di servizio - factory test
J4 IN-CIRCUIT low door motor CPU programming connector
J5 IN-CIRCUIT high door motor CPU programming connector

CNAUX Connector for additional I/O VB 403 board
CNMA-CNMB Connectors for VB 3406 B motor board - CN15 connector
CNMC-CNMD Connectors for VB 3406 B motor board - CN14 connector
p40/69

Figure 2-44 LAY OUT - Intercom plates

3. Preventive Maintenance and Adjustments

3.1. Main Checks

After having installed the booth to be sure that everything is working correctly, some checks have to be done. These checks should be done at least twice a year:

1) Check that the two motors are correctly fixed and tighten

Figure 3-1 Motors check

Check that the four screws [1] are tighten to avoid wrong motors movements

2) check that sliding doors end pistons are correctly fixed.
3) Adjust end piston fixing bolt until the end pistons are activated when the sliding doors are correctly close
p42/69

3.2. Basic Maintenance

Clean once a week with a soft cloth all photocells because if they are dirty they may cause a wrong doors working (sliding doors may stop with no reason, because dust on the photocells seem to be an object between the sliding door and the booth). Figure 3-2. In case a wrong doors working still remain, probably the photocells are in a wrong position.

Figure 3-2 Booth cleaning

If the booth needs a different kind of maintenance, that is to say some parameters (speed of the doors, sensitivity of metal detector) have to be changed, please see paragraph 3.3 and 3.4.

Ceiling Lamp Removal, Replacement: Using a glove or paper towel grab the bulb and pull it from its socket. Using a glove or paper towel push a new bulb into the fixture socket.

Ceiling Lamp Fixture Removal, Replacement: Remove the wiring of the faulty fixture from the main board VB3406. Pull the fixture and its wiring down through the hole. Work the wiring up through the hole in the ceiling panel and push the light fixture into hole until it snaps into place. Wire the light fixture to the main board.

Traffic-lights removal, replacement: when a traffic lights has to be replaced pull the traffic-lights plate and replace it with the new one as show in the next Figure 3-3.

Figure 3-3 Traffic lights plates replacement

3.3. Doors parameters setting

To change doors parameters follow these procedures:
From the console enter in Service Programming turning selector S1 clockwise to PROGRAM. On the display it appears:

$$
\begin{aligned}
& \text { COMMAND MODE } \\
& 7=>\text { AM } 8=>\text { PM } 9=>\text { NIGHT } \\
& 4=>C O N S O L E \\
& 5=>\text { FUNCTIONS }
\end{aligned}
$$

Pushing in rapid sequence the buttons F3, F4 and 1 the service menu is entered. On the display it appears:

$$
\begin{aligned}
& \text { SERVICE MENU } \\
& \text { 1= READ PATH } \\
& \text { 2= MOTOR PARAMETERS } \\
& \text { 3= TIME WAIT }
\end{aligned}
$$

READ PATH: Push button 1 to access the "path" menu to change the opening/closing path points of the doors. On the display it appears:

> | DOOR SELECTION |
| :--- |
| 1= INTERNAL DOOR |
| 2= EXTERNAL DOOR |

Pressing buttons $1-2$ it is possible to introduce new parameters in closing and in opening for the high door and the low door.

Push button 1 to introduce new parameters in closing and in opening for the high door. On the display it appears:

READ INT PATH		
xx		
$3=$ Reset		7= Save
4= Open		$8=$ Close

Follow the next steps in order to introduce the new path:

1) push button 8 until the door is completely closed
2) push button 3 to reset the old path
(on the display it appears 00 instead of the old points number)
3) push button 4 until the door is completely opened
4) push button 7 to save the new data. On the display it appears:

SAVE DATA AND RECORD	
THE PATH ?	
$3=$ Cancel	$7=$ Save

Pressing button 3 to cancel the new parameters.
Pressing button 7 to introduce the new parameters: the booth automatically makes a new door initialization to record the new path.

Push button 2 to introduce new parameters in closing and in opening for the low door. On the display it appears:

READ EXT PATH	
xx	
$3=$ Reset	
$4=$ Open	
4= Save	
$8=$ Close	

Follow the next steps in order to introduce the new path:

1) push button 8 until the door is completely closed
2) push button 3 to reset the old path
(on the display it appears 00 instead of the old points number)
3) push button 4 until the door is completely opened
4) push button 7 to save the new data. On the display it appears:

SAVE DATA AND RECORD
THE PATH ?
$3=$ Cancel

Pressing button 3 to cancel the new parameters.
Pressing button 7 to introduce the new parameters: the booth automatically makes a new door initialization to record the new path.

Rotate S 1 selector back to ON position to get out of this function.

MOTOR PARAMETERS: Push button 2 to access the "parameters" menu to change the doors movements setting. On the display it appears:

```
DOOR SELECTION
1= INTERNAL DOOR
2= EXTERNAL DOOR
```

Pressing buttons 1-2 it is possible to introduce new parameters for the high door and the low door. On the display it appears:

The two doors have the same menu voices: on the display appears which door is selected at the moment.

- push button 5 to increase the current value
- push button 6 to decrease the current value
- push button 4 to access the previous menu item
- push button 8 to access the next menu item
p45/69
- push button \# to save the new data. On the display it appears:

SAVE DATA AND RECORD
THE PATH ?
$3=$ Cancel

Pressing button 3 to cancel the new parameters.
Pressing button 7 to introduce the new parameters: the booth automatically makes a new door initialization to record the new path.

Rotate S 1 selector back to ON position to get out of this function.
A) PROTECTION THRESH.: value from 1 to 100. It represents the "power" that the door uses to win an obstacle during the run. A higher value makes the door "stronger".
B) INITIALIZ.SPEED: value from 1 to 100 . It is speed of the door during the initialization process or when the door performs a "reverse" during the run (example: when a safety beam is alarmed). A higher value makes the door "faster" during initialization.
C) OPEN: SPEED: value from 1 to 100 . It is speed of the door in opening. A higher value makes the door "faster".
D) OPEN: \% PATH ACCELL: value from 1 to 100. It is \% of the whole space in which the door accelerate up to the normal speed in opening (item C)). A higher value makes the door "slower".
E) OPEN: START BRAKE: value from 1 to 100 . It is \% of the whole space to be made by the door in opening before the door starts decelerating up to 0 .
F) OPEN: TIME BRAKE: value from 1 to 1000. It is time of the short circuit applied on the motor when the door starts to brake in opening. Value expressed in milliseconds.
G) OPEN: BRAKE SPEED: value from 1 to 100 . It is braking speed of the door in opening. A higher value makes the door "faster".
H) CLOSE: SPEED: value from 1 to 100. It is speed of the door in closing. A higher value makes the door "faster".
I) CLOSE: \% PATH ACCELL: value from 1 to 100. It is \% of the whole space in which the door accelerate up to the normal speed in closing (item H). A higher value makes the door "slower".
L) CLOSE: START BRAKE: value from 1 to 100 . It is $\%$ of the whole space to be made by the door in closing before the door starts decelerating up to 0 .
M) CLOSE: TIME BRAKE: value from 1 to 1000. It is time of the short circuit applied on the motor when the door starts to brake in closing. Value expressed in milliseconds.
N) CLOSE: BRAKE SPEED: value from 1 to 100 . It is braking speed of the door in closing. A higher value makes the door "faster".

TIME WAIT: Push button 3 to access the "parameters" menu to change the time wait setting. On the display it appears:

$5=>$ Inc	

Value $x x$ in seconds

- push button 5 to increase the current value
- push button 6 to decrease the current value
- push button \# to save the new data. On the display it appears:
SAVE TIME BADGE
SETTING ?
$3=$ Undo $\quad 7=$ Save

Pressing button 3 to cancel the new parameters.
Pressing button 7 to introduce the new parameters.

Note : in case 0 is the value saved, the wait timing is OFF.

Rotate S 1 selector back to ON position to get out of this function.

3.4. Metal Detector setting

If in the booth a metal detector is fitted follow this instructions.
The metal detector board is located in the top or inside the vertical jamb of the booth as can be seen from Figure 2-18 page 21 and Figure 2-19 page 22 and from the following figure.

Figure 3-4 Metal Detector Board

The layout of the board is shown at Figure 3-7.
This board has the option to be connected with a programming console. The console is not used during the normal operation of the metal detector, but it is needed during activation and maintenance procedure. (see Figure 3-5)
The console can be used for more than one booth with metal detector. Just one console is requested in case of multiple units with multiple metal detectors.

Figure 3-5 Metal Detector programming console

3.4.1. Electrical wiring connections

The next figures will show all wiring connections among metal detector board, the programming console and the two antennas.
For the connection to the main board VB 3406.

Figure 3-6 General wiring connections

Figure 3-7 Metal detector board layout

ClearLock 641-MT-EN
The information contained in this document is the property of Automatic Systems and is confidential. The recipient is forbidden to use it for any purpose other than for the use of the products or the execution of the project to which they refer or to communicate it to third parties without the prior written consent of Automatic Systems. This document is liable to change without advance notification.

Figure 3-8 metal detector board electrical wiring connection

M1

M4

M5

M7

M8

M3

	2	ON2		
0	1	ON3	ON/OFF	Key selector contact

Figure 3-9 metal detector console wiring connection

Figure 3-10 metal detector board electrical wiring connection

Up to four Metal Detector can be installed one to the side of another, making the synchronization following the electrical draw (see also the other parts regarding the sync. within this manual)

Table 3-1 metal detector board components description

DS1
MASTER/SLAVE setting on MASTER M.D.

DS1		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0}$	ONLY MASTER	ON	OFF	OFF	OFF
1	MASTER + 1 SLAVE	OFF	ON	OFF	OFF
2	MASTER + 2 SLAVE	OFF	OFF	ON	OFF
3	MASTER + 3 SLAVE	OFF	OFF	OFF	ON

MASTER/SLAVE setting on SLAVE M.D.

DS1		1	2	3	4
--	M.D. SLAVE	ON	OFF	OFF	OFF

DS2
Settings.

DS2	ON	OFF
1 Buzzer	Enable	Disable
$\mathbf{2}$ OUT OF SERVICE	Enable	Disable

BL
Bar with 20 led indicating sensitivity/signal level. This M.D. model is not provided with the led bar on board.

BZ1
Alarm buzzer. Switch selector 1 on DS2 to ON to activate.
M1
Power connector (24VDC - 3A max).

M1	Ref.	Description
$\mathbf{1}$	+VIN	+24VDC
$\mathbf{2}$	GND	Ground + antennas shield
$\mathbf{3}$	-VIN	OVDC

M2
Connector for supplementary back-up battery 12V - 7Ah.

M2	Ref.	Description
$\mathbf{1}$	$\mathbf{+}$	Battery +
$\mathbf{2}$	-	Battery -

M3
ON/OFF connector. To switch ON contact must be bridged. When the M.D. has to stay ON all the time install a fixed bridge.

M3	Ref.	Description
$\mathbf{1}$	ON2	Switch connector terminal
$\mathbf{2}$	ON3	Switch connector terminal

M6
I/O connection to external devices

M6	Ref.	Description
$\mathbf{1}$	CSP	Main Synchronization command
$\mathbf{2}$	$\mathbf{2}^{*}$	Synchronism 2
$\mathbf{3}$	3^{*}	Synchronism 3
$\mathbf{4}$	$\mathbf{4}^{\star}$	Synchronism 4
$\mathbf{5}$	$\mathbf{0}$	"0"
$\mathbf{6}$	SIN IN	Synchronism signal
$\mathbf{7}$	INIB	Inhibition signal (transmission stand by)

SYSTEMS

M4
Channel 2 (TX 2) connector.

M4	Ref.	Description
$\mathbf{1}$	M4.1	Antenna cable (red collar/black wire)
$\mathbf{2}$	M4.2	Antenna cable (red collar/brown wire)
$\mathbf{3}$	M4.3	Antenna cable (red collar/blue wire)

M5
Channel 1 (TX 1) connector.

M5	Ref.	Description
$\mathbf{1}$	M5.1	Antenna cable (red collar/black wire)
$\mathbf{2}$	M5.2	Antenna cable (red collar/green wire)
$\mathbf{3}$	M5.3	Antenna cable (red collar/red wire)

M7
Channel 2 (RX 2) connector.

M7	Ref.	Description
$\mathbf{1}$	M7.1	Antenna cable (black collar/ black wire)
$\mathbf{2}$	M7.2	Antenna cable (black collar/ brown wire)
$\mathbf{3}$	M7.3	Antenna cable (black collar/ blue wire)

M8
Channel 1 (RX 1) connector.

M7	Ref.	Description
$\mathbf{1}$	M8.1	Antenna cable (black collar/ black wire)
$\mathbf{2}$	M8.2	Antenna cable (black collar/green wire)
$\mathbf{3}$	M8.3	Antenna cable (black collar/ red wire)

M9
External "reset" command connector. To be used when the M.D. is set-up to "static", or other devices are connected. (e.g. inside an interlocking equipment). When M9 is bridged the alarm signal is reset.

M9	Ref.	Description
1	RESET	Reset command
2	0	"0" reference

M10
External alarm signal connector. (Available either as N.O. or N.C. - max 1A 30VDC).

M10	Ref.	Description
$\mathbf{1}$	\mathbf{C}	Common (max 1A 30VDC)
$\mathbf{2}$	N.C.	Normally Closed Contact (M.D. is active)
$\mathbf{3}$	N.O.	Normally Open Contact (M.D. is active)

J2
Connection to the external led bar display with 26 wires flat cable. Available for M.D. stand alone unit only

F1
Main fuse: 2,5A max.
LD1, LD2, LD3, LD4
Abnormal operation red signaling leds: switched off on correct working condition. Lit on in case of M.D. antennas malfunctioning. WHEN LIT CALL ON SERVICE.

LD7
Generic "failure" red led: switched off on normal use; WHEN LIT CALL ON SERVICE. If LD7 is ON together with LD3/LD4, check if the wiring on M7/M8 is correctly fixed, or if the receiver antenna has been visibly damaged. In the second case the receiver antenna has to be replaced. If LD7 is ON together with LD1/LD2, the metal detector board is out of order and has to be replaced.

LD5, LD6
Operational yellow, green leds: LD5 lit ON on normal use; LD6 is OFF on normal use; LD5 switched off in case of M.D. alarm; LD6 lit ON in case of M.D. alarm LD8 Operational green led: switched OFF on normal use; lit ON when the M.D. "reset" command is ON. (M9).
p56/69

LD9, LD10, LD11, LD12

Operational green leds: when lit ON the relevant filter (LD9 - Filter 1; LD10 - Filter 2; ...) has been chosen at the M.D. remote console (see Function 11 page 60).

Table3-2 K6317AN1 board components description

P11
"Reset" button: for M.D. setting-up and start-up procedures.

LD13

Operational green led: lit ON when the M.D. is "inhibit" (INIB on M6) that is to say the turnstile is stopped - M.D. alarm is not displayed on booth console. When the turnstile starts rotating the led is OFF and M.D. alarm is displayed on the booth console too.

Table3-3 K6317BN1 board components description

SW1
Microprocessor reset button: for M.D. test procedures.
SW2
"Password reset" button: used in case of programming password lost.
D2
Transmission led yellow: lit on when the M.D. is transmitting to the console (this happens during M.D. setting).

3.4.2. Programming

Programming can be selected using the dedicated console.

Metal Detector has 12 programming sections, as shown here below:
19) working frequency selection
20) sensitivity level adjustment
21) object catching sensitivity
22) automatic refresh times
23) pre-amplification setting
24) vibration noise damping channel 1 and cannel 2
25) static / dynamic modality
26) password selection
27) channel amplification selection
28) program number selection
29) filter selection
30) ON / OFF channel 1 and channel 2 during vibration noise damping programming section.

Console buttons legenda:
A to go to the next programming section
V to go back to the previous programming section
< to decrease values of each programming section
$>$ to increase values of each programming section.

With PROGR button it is possible to confirm the set value.
After having finished wiring connections as shown in the diagrams, proceed as shown here below:
Turn ON Metal Detector rotating the console key to ON position (position1).
The console display will light and on the display will appear:

> Introduce password
> 0 to 9 buttons
> Enter to confirm

The preset password is 58, to change the password see Function 8.

3.4.3. Functions

All MENU functions changes have to be recorded pushing button PROGR to automatically re-establish the normal condition of metal detector working.
Anyway, it is possible to see in real time metal detector working only about these functions:
FREQUENCY - SENSITIVITY - VIBRATION NOISE DAMPING CHANNEL 1 AND CHANNEL 2
In case the operator has to modify one of these function parameters, he/she can do that without pushing button PROGR, except at the end when he/she will find the correct value.
Otherwise the operator can turn the console key in position 2 for a second and then re-position the key in position 1 (position 0: M.D. OFF, position 1: M.D. ON) and at the same time press RESET button until the display LCD return in the normal position.
After this operation when the operator enters in MENU with the password, he/she can remain in MENU for the period he/she needs and not only for 20 second as in normal conditions.
To stop this function turn again the key in position 2 for a second and then in position 1 without pressing any other button.

1 Function 1 - Working frequency selection

This function is used to set an optimum working frequency according to the environment in which the metal detector has been installed, avoiding outside noises (neon signs, motors, electric devices, etc.) can affect metal detector correct working.
It is possible to see the noise on the led bar BL, central leds move with an irregular movement. To change preset parameter enter in this function and with dedicated buttons increase / decrease the value (each value increases / decreases of 0.6 Hz) till the correct frequency has been found (the led bar BL on the top of the two metal detector antennas has the central leds stable).
The metal detector working frequency has to be in the range of $450 \mathrm{~Hz}-971.8 \mathrm{~Hz}$.

2 Function 2 - sensitivity level adjustment.

This function is used to set the metal detector sensitivity level, the value must be in the range of 0 (minimum sensitivity) to 255 (maximum sensitivity).
The sensitivity level can be also seen on the led bar BL made of 20 leds, located on the top of the two metal detector antennas.
In the central part C led is ON when metal detector is in stand-by (no metal objects are crossing the two antennas).
There are other two leds that are ON in asymmetrical way with reference to the central led C : ex. A6 and B6 (see Figure 3-11).

It is possible moving these leds to change the sensitivity level: increasing the sensitivity level, the field between the leds is shorter and they will be nearer A1 and B1 leds, decreasing the sensitivity level, the field between the two leds is larger, moving to A10 and B10 leds.

Figure 3-11 Led VIS bar

After having found the requested sensitivity, confirm the value with PROGR button.

3 Function 3 - Object catching sensitivity

This function is used to set the object catching sensitivity while the object is crossing the two antennas.
There are 4 levels in the range of $5-20: 5-10-15-20$ (low - medium-low - medium-high - high)
After having chosen the requested catching sensitivity, confirm with PROGR button.
Note: the value suggested is 10 .
Note: this function is connected with environmental noise immunity (the less noises are, the higher objects catching sensitivity is accepted).

- minimum object catching sensitivity (5) maximum noises control
- maximum object catching sensitivity (20) minimum noises control.

The transmitting antenna (red cable) must be on the side of possible noise source (ex: X ray device)

4 Function 4 - Automatic refresh times

This function is used to set metal detector automatic refresh times canceling false alarms due to environmental noises that are different in each place.
There are 5 levels and the value must be in the range of 0 (no correction in case of environmental noises) and 4 (maximum correction in case of environmental noises).
After having found the best automatic refresh times, confirm the value with PROGR button.
Note: the value suggested is 4.

5 Function 5 - Pre-amplification setting

This function is used to set pre-amplification parameters in connection with metal detector antennas used and the requested program selection (range 1:1 / 1:2 / 1:4).
Note: the value must be set up to 1:2.

6 Function 6 - Vibration noise damping channel 1 and channel 2

Vibration noise damping setting allows to optimize metal detector working, avoiding possible noises due to antennas movement and/or vibrations due to objects near metal detector. The setting has to be done introducing one channel only per time (\Rightarrow function 12 channels to ON / OFF).
The values must be set in the range of 220-250.
After having turn OFF the channel that has not to be set (function 12), move the two antennas a little bit.
If it is possible to see on the led bar BL leds oscillation (from the central to A10 and B10), change the present setting until it was found a value that reduce to the minimum leds oscillation.
Do the same thing for the other channel and press PROG to confirm the value.

$7 \quad$ Function 7 - Static / dynamic modality

In "static" modality there is a continuous alarm in case of a metallic object between the two antennas, instead, in "dynamic" modality there is a short alarm each time a metal object cross the two antennas. The decision between the two options depends on clients needs.
Note: the modality has to be set in "dynamic".

8 Function 8 - Password selection

This function is used to change the pre-set password digiting on the console a new number with maximum 12 characters and press ENTER button.
Then press PROGR button.
In case the operator forget the password, he/she can press the dedicated button on the board with the microprocessor (see Figure 3-7): in this case the set password is 123456 that allows the operator to enter in MENU and follow this procedure to introduce a new password.

9 Function 9 - Channels amplification selection

the value must be in the range of 1-2-3-4.
It depends on which program has been chosen and which kind of antennas has been installed.
Note: the value must be set up to 3 .

10 Function 10 - Program selection
This function is used to change the program number.
Note: the program must be set up to 0 .

Table 3-4 Program selection

Program	Vibration noise damping	Filter selection
$\boldsymbol{0}$	≈ 230	$\mathbf{1 = O N}$
1	≈ 230	$1=\mathrm{ON}$
2	≈ 180	$1=\mathrm{ON}$
3	≈ 170	$4=\mathrm{ON}$
4	≈ 230	$1=\mathrm{ON}$
5	≈ 220	$1=\mathrm{ON}$
6	≈ 230	$1=\mathrm{ON}$
7	---	---
8	≈ 60	$1=\mathrm{ON} 4=\mathrm{ON}$
9	≈ 220	$1=\mathrm{ON}$
10	≈ 140	$4=\mathrm{ON}$

11 Function 11 - Filter selection
It is possible to introduce 4 different kind of filters, it depends on which kind of program is used and also which kind of electromagnetic noise is present in the area where the metal detector has been installed.
Usually it is used filter 1 ON but in particular condition it can be better using another filter ON.
Note : filter 1 must be set up to ON; filters 2-3-4 must be set up to OFF).

12 Function 12 - ON / OFF channel 1 and channel 2
This function is connected with function 6, because if vibration noise damping of channel 1 has to be cancel channel 2 has to be put in OFF position vice-versa.
Before going to function 6 memorize the set channel with PROGR.
To exit from MENU remember to press any time PROGR button to confirm the chosen setting. If not, metal detector may work with parameters different from the chosen ones. Be careful in case the console key has not been turn into position 2 (see page 48) because after 20 second without pressing any button the console exit automatically from MENU re-introducing the last saved parameters.

DIP-SWITCH:
DS2 : 1 ON: internal buzzer ON
1 OFF: internal buzzer OFF
2 ON: alarm in case of out of order
2 OFF: no alarm in case of out of order condition

2 must be always in ON position

In case of out of order condition (for example short circuit of TX or RX winding - a real rare situation), the output relay will be always in alarm, so that the buzzer will sound.
In this case it is not possible to enter in MENU also with the password but it is necessary to turn OFF the device.

DS1: used to synchronize M.D. near to the master one, till a maximum of 3 (3 SLAVE + 1 MASTER).

Ex. 1 ON single metal detector installation [1MASTER]
2 ON Two metal detectors installation [1 MASTER + 1 SLAVE (1=ON)]
3 ON Three metal detectors installation [1 MASTER + 2 SLAVE ($1=\mathrm{ON}$)]
4 ON Four metal detectors installation [1 MASTER + 3 SLAVE (1=ON)]
Notes: the working frequency on the slave M.D. console is $1 / 2$ of master M.D. in case there is 1 master and 1 slave M.D.; it is $1 / 3$ in case there are 1 master and 2 slaves M.D.; it is $1 / 4$ in case there are 1 master and 3 slaves M.D.
During parameters setting the operator may, if necessary, re-position leds to the central led with the manual reset (see Figure 3-7), or pushing button RESET on the console after having digit the password to enter in the MENU.
In case of lack of power there is a back up battery that supports metal detector for 2 hours
p62/69

4. Troubleshooting Guide

* If something on request has not been fitted, the relevant problem cannot exist

One or both doors do not operate correctly				
Possible Cause	Check Point	Action		
1) in the slide - way of the door there is an object that avoid the correct movement	Check that no object is inside the slide-way	Remove the object and clean the slide-way with a vacuum cleaner		
2) one of door parameters is not appropriate for that place	Please see Door Parameters Setting at page 43 of this manual and follow the instructions	Adjust accordingly		
3) one or more safety beams				
photocells are dirty	Check if there is some dust on one or more safety beams photocells	Clean with a soft towel. Don't use solvents		
4) one or more safety beams				
photocells have been broken				
or they are misaligned			\quad	Check if one or more safety beams
:---				
photocells are correctly fixed to the				
frame and aligned	\quad	Replace the safety beams		
:---				
photocells paying attention to				
connect the new one in the same				
way if it's broken, and aligned				
them carefully				

The console is OFF

Possible Cause	Check Point	Action		
1) S1 selector at the console is in OFF position	Check that S1 selector is in ON position	If it is in OFF position turn cockwise the key of 90°		
console and the booth are not properly connected	Check that the console connection is properly wired with the console cable and that the wiring of connection cable at the main board is ok (see page 25 of this manual)	Act accordingly	\quad	Check that fuses F1 and F2 on
:---				
3) One or two fuses are burnt		Replace the burnt fuses with new		
:---				
ones with same characteristic (see				
page 39 of this manual)				

The consoles signals the lack of power

Possible Cause
 1) Booth power switch of the main

 power board of the building is in OFF position.2) The power supply plug is not correctly connected or there is a fault in the plug
3) There is a lack of the main power

Check Point

Check if the booth power switch of the main power board of the building is in ON position.

Check that the plug is not damaged and it is correctly connected

Check main power presence at the power supply with proper test instrument

Action

If not turn ON the main power

In case the plug is damaged replace it

Call the Energy supplier

*Metal Detector is continuously alarmed or is not alarmed by metals

Possible Cause	Check Point	Action
1) Parameters set are not correct	Metal Detector does not work properly	Follow instruction according to Metal Detector Setting at page 47 of this manual
2) Metal detector is OFF	Metal detector is not alarmed by any metal	Check on the console if MD has been excluded (see Operating Guide)
3) Metal detector is broken	Check if the two antennas have been damaged	Change the damage metal detector antenna/s following instructions at page 12 of this manual

*2 people are allowed to enter even if the single presence sensor system is ON (on the console)

Possible Cause	Check Point	Action
1) VB1290 has to be adjusted	people do not alarm VB1290	See Figure 2-38 and follow the instructions
2) Problem with the connection between VB1290 and VB3406	there is an alarm on VB1290 but 2 people can enter the same	Check the connection between VB1290 and VB3406 (CN11 see page 29 of this manual)
3) VB1290 not working	2 people do not alarm VB1290	After having checked that it isn't point 1, VB1290 has to be replaced

Spot lights are OFF during booth working

Possible Cause	Check Point	Action
1) spot lights are broken	spot lights is OFF	Replace the relevant spot light
2) wrong connection on VB3406	spot lights is OFF	Check the connection on VB3406 (see page 30 of this manual)

One or both traffic lights don't work

Possible Cause	Check Point	Action
1) one or two leds are broken	Only the red or the green light doesn't work	Replace the traffic lights as shown at Figure 3-3
2) wrong connection on VB3406	Both lights are OFF	Check the connection on VB3406 (CN3-CN4 see page 26 of this manual)

*The loudspeaker doesn't work

Possible Cause	Check Point	Action
1) wrong connection on VB3406		Check the connection on VB3406 (see pages 28 of this manual)
2) the loudspeaker is broken	Check if the loudspeaker is damaged	Replace the broken loudspeaker (see of pages 21-28 this manual)

*The intercom doesn't work	Check Point	Action
Possible Cause	No intercom is visibly damaged	Adjust the connection on VB3406 and on the handset (see pages 36 of this manual)
1) wrong connection on VB3406	One intercom is visibly damaged	Replace the broken intercom
2) one intercom is broken		

During initialization one or both doors do not close as first action		
Possible Cause	Check Point	Action
1) The connection to motors is inverted	One or both doors start opening and not closing	Invert the wiring on the motor/s

During initialization one or both doors do not move

Possible Cause	Check Point	Action
1) one or both motors are not correctly connected	Check the wiring to the motor/s	Adjust the wiring (see page 28 of this manual)
2) on VB3406 there isn't the correct voltage	Check the voltage of 24V on VB3406 at point (connector M2 page 24 of this manual)	See the next point
3) one or more fuses are burnt	Check that fuses F2, F3 and F4 on VB3406 are not burnt	Replace the burnt fuses with new ones with same characteristics (see page 39 of this manual)
4) VB3406B boards are not correctly connected with VB3406	Locate the VB3406B on the main board	Check that VB3406B boards are correctly connected

During initialization one or both doors do not move correctly

Possible Cause	Check Point	Action
1) the encoder/s are not correctly connected or are broken	Check the wiring on the encoders or if they are damaged	Adjust the wiring (see page 28 of this manual) or replace encoder/s if they are broken
2) the doors moving is limited by an obstacle or the mechanical lock has not been opened correctly	Check if there is an object in the slide - ways and if the mechanical lock is correctly open	Remove the object / open the lock

5. Appendix A - Bullet Resistive Glass Ratings

Table A-1 Threat Level

The booth is equipped as a standard with 26/27 mm thick glass
According to UNI EN 356 glass is P6B (attack resistance)
According to UNI EN 1063 glass is BR3/S (bullet proof)
Different levels glass are available on application.

6. Appendix B - PARTS (AD003 Drawing)

ClearLock 641-MT-EN
The information contained in this document is the property of Automatic Systems and is confidential. The recipient is forbidden to use it for any purpose other than for the use of the products or the execution of the project to which they refer or to communicate it to third parties without the prior written consent of Automatic Systems. This document is liable to change without advance notification.

7. Appendix C - Intercoms wiring - two places

